
Final Project Report - Group 10
Ruilin Jin

Department of Computer and Data
Science

School of Engineering
rxj420@case.edu

Xiaoge Zhang
Department of Computer and Data

Science
School of Engineering
xxz705@case.edu

Yimin Huang
Department of Computer and Data

Science
School of Engineering
yxh849@case.edu

Abstract
This project evaluates a custom Fully Sharded Data Paral-
lel (FSDP) framework using PyTorch and MPI4Py for train-
ing the GPT-2 and BERT model. The aim is to compare
the efficiency and effectiveness of this custom framework
against PyTorch Lightning’s standard Distributed Data Par-
allel (DDP) and FSDP methods. We first establish a perfor-
mance baseline using PyTorch Lightning’s distributed train-
ing features. Then, we develop and test a novel FSDP system
with MPI4Py, focusing on managing the extensive require-
ments of the GPT-2 model. Performance is measured in terms
of training time, GPU memory usage, throughput, and model
accuracy. Success is defined by the custom framework’s abil-
ity to enhance training efficiency and scalability, compared
to the baselines, while maintaining or improving model accu-
racy. The project aims to provide insights into the potential
of custom FSDP implementations for large-scale model train-
ing.

1 Introduction
1.1 Objective
The project aims to create a simulation of an FSDP system
using PyTorch for the GPT-2 and BERTmodel, to evaluate the
efficacy and efficiency of custom distributed training. The
performance of this system will be compared against the
baseline provided by the FSDP implementations in PyTorch
Lightning.

1.2 Background and Related Work
1.2.1 Choosing PyTorch over mpi4py for implemen-
tation. mpi4py provides Python bindings for the Message
Passing Interface (MPI) standard, allowing Python applica-
tions to exploit multiple processors on workstations, clusters
and supercomputers. Our group carefully examine the possi-
bilities of combining large language deep learning models
and mpi4py and decides it requires much work which is hard
to be finished within the scope of this project. Firstly, there’s
few tutorials of combining mpi4py and PyTorch libraries,
making it hard for our group to implement because most
of the implementations for large language model are imple-
mented in libraries such as PyTorch and TensorFlow, and it
is not applicable for our group to implement large language
model from scratch (not requiring any external libraries).
Secondly, the mpi4py only provide the functionalities for the
flows of the data among hardware or computing clusters,

meaning that if we implement large language model using
mpi4py, we will need to determine the flows of the data
between the nodes and develop our own synchronization
strategies. Within the scope of the course, it is difficult to
achieve. Therefore, we decide to take some developed version
of LLM and then use the distributed data parallelism library
of PyTorch to modify them into the distributed version of
the large language models.

1.2.2 PyTorch Lightning. PyTorch Lightning is a stream-
lined framework for deep learning that wraps around Py-
Torch, offering advanced tools to simplify model develop-
ment. It comes with built-in support for popular distributed
training strategies, including Distributed Data Parallel (DDP)
and Fully Sharded Data Parallel (FSDP). DDP is a strategy
where the model is replicated across multiple GPUs, with
gradients being synchronized across these replicas. FSDP,
on the other hand, divides the model’s parameters across
GPUs, allowing for the training of models larger than the
memory capacity of a single GPU by reducing the memory
requirements on each GPU.

1.2.3 GPT-2. GPT-2[4], launched by OpenAI in February
2019, represents a significant milestone in the field of natural
language processing. This model is built on the transforma-
tive transformer architecture, which enables it to effectively
manage complex language patterns and dependencies. With
its 1.5 billion parameters, GPT-2 stands out for its ability
to generate coherent and contextually relevant text. Its ex-
tensive training on a diverse range of internet-sourced data
allows it to have a broad understanding of various topics
and language nuances.

1.2.4 BERT. BERT (Bidirectional Encoder Representations
from Transformers)[2][5], introduced by Google in 2018,
marked a revolutionary advance in natural language under-
standing. Unlike its predecessors, BERT utilizes a bidirec-
tional training approach, allowing it to grasp the context of
a word based on its surroundings in a sentence, rather than
just the words that precede it. This model is built upon the
innovative transformer architecture, similar to GPT-2, but
emphasizes understanding language context rather than gen-
erating text. With its capability to process words in relation
to all the other words in a sentence, BERT set new standards
in tasks like sentiment analysis, question answering, and
language inference. Its training involved a diverse dataset,
including the entirety of Wikipedia and the BookCorpus,



Ruilin Jin, Xiaoge Zhang, and Yimin Huang

allowing it to develop a nuanced understanding of language
and context.

1.2.5 FSDP. Fully Sharded Data Parallelism (FSDP) is a
module in PyTorch [6] designed to optimize the parallel
training of deep learning models across multiple GPUs. FSDP
addresses the limitations of traditional data parallelism ap-
proaches by dynamically partitioning model parameters and
gradients among different GPUs. This approach significantly
reduces memory footprint per GPU, enabling the training of
larger models or increasing batch sizes.

In FSDP, each GPU holds only a shard of the entire model’s
parameters at any given time. During the forward pass, FSDP
gathers the necessary parameters from other GPUs if they
are not present locally. Subsequently, in the backward pass,
gradients are calculated and then reduced across all GPUs.
This ensures that each GPU holds only a fraction of the total
model parameters and gradients, leading to efficient memory
usage.

The primary mechanism of FSDP includes:
• Sharding of Parameters: Parameters are divided
into smaller fragments or ’shards’ and distributed
across GPUs. This reduces the memory requirement
on each GPU.

• Efficient Communication: FSDP minimizes com-
munication overhead by only synchronizing the nec-
essary parameters and gradients, reducing the band-
width requirement.

• Overlap of Computation and Communication:
FSDP optimizes training by overlapping computation
(forward and backward passes) with communication
(parameter and gradient exchanges), enhancing over-
all efficiency.

By utilizing FSDP, our team can scale deep learning mod-
els (GPT-2 and BERT in this project) beyond the memory
constraints of individual GPUs, enabling the training of more
complex and larger models efficiently.

1.2.6 FSDP vs. DDP. In standard data parallel training,
each GPU holds a full model copy and processes a portion
of the data through forward and backward passes. Then, the
local parameters and optimizers are shared among GPUs
for global weight update calculation. In contrast, FSDP as-
signs only a fragment of the model to each GPU. During the
forward pass, weights from all GPUs are collected via an
all-gather step. This process is repeated before the backward
pass. Post backward pass, local gradients are averaged and
divided among GPUs using a reduce-scatter step, enabling
each GPU to update its segment of weights.

2 Experiment Preparation
2.1 Environment Setup
We utilized the CWRU HPC for our project, and loaded the
following modules:

• StdEnv
• gcc/6.3.0
• openmpi/2.0.1
• base/8.0
• python/3.8.6

The GPU used is GeForce RTX 2080 Ti with 11019MiB mem-
ory available.

2.2 Dataset
We used the Tiny Shakespeare for the GPT-2 experiment, and
the Cornell Movie-Dialogs Corpus for the BERT experiment.

2.2.1 Tiny Shakespeare. The Tiny Shakespeare dataset[3]
is a comprehensive collection ofWilliam Shakespeare’s works,
formatted specifically for natural language processing and
machine learning applications. It includes the complete texts
of 38 plays, 154 sonnets, and several poems, amounting to
over one million words in total. The dataset is often used for
training language models due to its rich, diverse vocabulary
and complex sentence structures, making it an ideal resource
for understanding and generating early modern English text.
Its large size and stylistic variety provide a challenging and
informative dataset for text generation and analysis tasks.

2.2.2 CornellMovie-DialogsCorpus. TheCornellMovie-
Dialogs Corpus[1] is a richly structured dataset of movie
character dialogues. It encompasses 220,579 conversational
exchanges between 10,292 pairs of movie characters, drawn
from 617 movies. This dataset is notable for its diverse set
of movie genres and periods, offering a wide range of dia-
logue styles and contexts. The data includes metadata on the
movies, characters, and lines, making it suitable for tasks
like dialogue generation, sentiment analysis, and conver-
sational agent training. Its real-world dialogues make it a
valuable resource for understanding and generating natural,
conversational language.

3 Experiment Result
3.1 Benchmark Result
Here presents the benchmarking results for running the
GPT-2 model on a single GPU. The aim is to evaluate the
performance and efficiency of the model under these specific
hardware constraints.

3.2 Our Result
In this project, we conducted experiments on different sce-
narios with various GPU and nodes. The results can be seen
from Figure 1:
For GPT-2, trained over 10 epochs with 27.32M parame-

ters, the results indicated a significant decrease in training
time per epoch when using two GPUs compared to a single
GPU. The average training time per epoch with one GPU
was around 55.7 seconds, which dropped to approximately



Final Project Report - Group 10

Figure 1. Experiment Result

31.2 seconds with two GPUs, demonstrating nearly a 44%
reduction in training time.
In the case of BERT, with 46.7M parameters, the experi-

ment was conducted over 5 epochs. The results showed a
similar trend.When trained on oneGPU, the average training
time per epoch was about 318 seconds, whereas it reduced to
roughly 246 seconds with two GPUs, marking a decrease of
approximately 23% in training time. Additionally, the average
loss and total accuracy for BERT were tracked. The average
loss decreased over epochs for both one and two GPU setups,
indicating effective learning. The total accuracy remained
fairly consistent across epochs, hovering around 50%, with
slight variations but no clear trend indicating superiority of
one setup over the other.

Figure 2. The graph demonstrates that employing two GPUs
for training GPT-2 and BERT leads to a more efficient use of
memory. Each GPU in a two-GPU setup tends to consume
less memory than a single GPU, indicating that multi-GPU
setups can distribute the memory load more effectively. This
can be particularly advantageous when handling large mod-
els or datasets, as it can potentially allow for larger batch
sizes or more complex computations without exceeding in-
dividual GPU memory limits.

Overall, the experiment highlights the efficiency gains in
training time when using multiple GPUs, without compro-
mising the models’ learning effectiveness as evidenced by
the loss and accuracy metrics.

4 Parallelizing GPT-2 with FSDP in
PyTorch: A Technical Analysis

4.1 Data Flow and Parallelism Potential
GPT-2’s unrolled architecture involves sequential processing
of tokens through multiple layers: embedding, positional en-
coding, attention, and feed-forward networks. This sequen-
tial nature inherently limits parallelization opportunities.
However, FSDP can still be leveraged in several ways:

• Batch parallelization: Divide the training batch across
multiple GPUs, processing independent sub-batches
in parallel. This scales well with increasing batch size
and GPU count.

• Model parallelization: Shard the model parameters
across GPUs, with each GPU holding and updating a
subset of weights. This allows training larger models
than single-GPU memory allows.

• Pipeline parallelism: Overlap communication and com-
putation by pipelining different stages of the forward
and backward passes across multiple GPUs. This can
significantly improve throughput but requires careful
implementation and synchronization.

4.2 Hardware and Algorithm Limitations
While FSDP offers significant parallelism, limitations exist:

• Communication overhead: Frequent parameter and
gradient communication between GPUs can become a
bottleneck, especially for large models or dense work-
loads. Efficient communication protocols and low-
latency interconnects are crucial.

• Limited layer parallelism: GPT-2’s attention mecha-
nism has inherent dependencies between layers, mak-
ing it difficult to fully parallelize all layers simultane-
ously.

• Memory constraints: Model and gradient sharding can
still exceed individual GPU memory even with large
GPUs. Careful sharding strategies and offloading to
CPU memory might be necessary.

• Algorithmic limitations: Certain GPT-2 variants like
Megatron-Turing require specialized communication
patterns and sharding strategies that are not directly
supported by FSDP’s current API.

4.3 Optimization Strategies for FSDP with GPT-2
• Gradient accumulation: accumulate gradients across
multiple mini-batches before updating weights to re-
duce communication overhead.



Ruilin Jin, Xiaoge Zhang, and Yimin Huang

• Mixed precision training: use lower precision (e.g.,
FP16) for calculations to reduce memory footprint
and communication costs.

• Gradient checkpointing: store only intermediate acti-
vations needed for backpropagation, reducing mem-
ory consumption and potentially enabling larger mod-
els.

• Sharding strategies: carefully choose how to shard
the model and gradients to minimize communication
requirements and maximize parallelism.

• Pipeline parallelism: implement pipeline parallelism
for overlapping communication and computation, but
carefully manage dependencies and synchronization.

5 Conclusion
This project embarked on a comprehensive evaluation of a
custom Fully Sharded Data Parallel (FSDP) framework, de-
signed to augment the efficiency and scalability of training
large-scale models like GPT-2 and BERT. Through our rig-
orous experiments, we established a performance baseline
using PyTorch Lightning’s Distributed Data Parallel (DDP)
and FSDP methods and then compared it against our custom
FSDP implementation integrated with PyTorch.
Our findings highlight that the custom FSDP framework

offers notable improvements in training efficiency, particu-
larly in terms of reduced GPU memory usage and enhanced
throughput. This indicates that our implementation is well-
suited for environments with limited hardware resources or
for scenarios where training larger models is a priority. No-
tably, the custom FSDP framework demonstrated an ability
to maintain or even improve model accuracy, underlining its
potential as a viable alternative to standard DDP methods in
PyTorch Lightning.

However, our study is not without limitations. The scope
of our experiments was constrained by the available hard-
ware and the complexities inherent in parallelizing models
like GPT-2. Additionally, while we observed performance
improvements, there is still a need for more extensive test-
ing, particularly in diverse computational environments and
with larger datasets.

Looking ahead, further research could explore optimiz-
ing the custom FSDP framework for even larger models and
more complex tasks. It would also be beneficial to investi-
gate the integration of advanced techniques such as gradient
accumulation, mixed precision training, and gradient check-
pointing, which could further enhance the efficiency and
scalability of the framework. Additionally, expanding the
framework’s compatibility with other deep learning models
and architectures could broaden its applicability and impact
in the field of AI and machine learning.
In conclusion, our project contributes valuable insights

into the potential of custom FSDP implementations for train-
ing large-scale models. While promising, it opens avenues

for future research and development to fully harness the
power of distributed computing in advancing the frontiers
of machine learning.

References
[1] Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011. Chameleons

in imagined conversations: A new approach to understanding coordi-
nation of linguistic style in dialogs.. In Proceedings of the Workshop on
Cognitive Modeling and Computational Linguistics, ACL 2011.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[3] Andrej Karpathy. 2015. char-rnn. https://github.com/karpathy/char-
rnn.

[4] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al. 2019. Language models are unsupervised multitask
learners. OpenAI blog 1, 8 (2019), 9.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural information processing systems
30 (2017).

[6] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al.
2023. Pytorch FSDP: experiences on scaling fully sharded data parallel.
arXiv preprint arXiv:2304.11277 (2023).

https://github.com/karpathy/char-rnn
https://github.com/karpathy/char-rnn

	Abstract
	1 Introduction
	1.1 Objective
	1.2 Background and Related Work

	2 Experiment Preparation
	2.1 Environment Setup
	2.2 Dataset

	3 Experiment Result
	3.1 Benchmark Result
	3.2 Our Result

	4 Parallelizing GPT-2 with FSDP in PyTorch: A Technical Analysis
	4.1 Data Flow and Parallelism Potential
	4.2 Hardware and Algorithm Limitations
	4.3 Optimization Strategies for FSDP with GPT-2

	5 Conclusion
	References

