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Abstract

The field of image inpainting[1] has witnessed substantial
growth, fueled by the need for advanced techniques in dig-
ital forensics, image restoration, and object removal. Tra-
ditional methods, however, often fall short in maintaining
semantic coherence. Our research introduces a approach to
image inpainting that integrates causal reasoning within a
novel generative process, leveraging the strengths of Varia-
tional Autoencoders (VAEs) and Structural Causal Models
(SCMs). We propose a model that adapts the Causal Layer of
CausalVAE, enhanced by the structural elements of NVAE,
to address three primary challenges: creating expressive neu-
ral networks, scaling up training for larger image sizes and
groups, and maintaining training stability. This model fo-
cuses on the coherent reconstruction of missing or corrupted
image regions through an understanding of causal relation-
ships among features. Our approach not only enhances the
semantic coherence and realism of inpainted images but
also fosters interpretability in the latent space, paving the
way for more reliable and comprehensible image restoration
processes.

1 Introduction
1.1 Motivation

Image inpainting, the technique of restoring corrupted or
missing parts of images, is indispensable in various domains
including digital forensics, image restoration, and object re-
moval. The endeavor is to refill the missing segments in a
visually coherent manner [4]. However, conventional meth-
ods often stumble in preserving semantic coherence. The
recent strides in disentangled representation learning pro-
vide a promising pathway to embed causal reasoning in
image inpainting, which is anticipated to bolster the seman-
tic coherence and realism of inpainted images, rendering
the inpainting process more reliable and the outcomes more
interpretable.

1.2 Background & related work

1.2.1 Variational Autoencoders (VAEs). VAEs [3] have
emerged as a powerful framework for probabilistic genera-
tive modeling. They are especially known for their capability
to learn a lower-dimensional representation of input data,
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which is instrumental for various tasks in computer vision in-
cluding image inpainting. By imposing a probabilistic graph-
ical model over the variables, VAEs can generate new data
that’s similar to the training data, making them a popular
choice for generative tasks. The structure of VAEs, which
includes an encoder and a decoder, has been the backbone
for advancing disentangled representation learning.

1.2.2 CausalVAE. A recent advancement in the realm of
disentangled representation learning [8] is the introduction
of CausalVAE [9], which integrates causal reasoning within
the Variational Autoencoder framework. The CausalVAE
model augments the traditional VAE with a causal layer, aim-
ing to uncover and leverage causal relationships among the
features in the data. This architecture allows for a more struc-
tured and interpretable latent space, which is of significant
interest for tasks that could benefit from an understanding of
causal relationships among the features, like image inpaint-
ing. The principles laid down by the CausalVAE framework
underline the potential of causal disentanglement in enhanc-
ing the generative processes, which is a cornerstone of our
proposed advancement in image inpainting.

1.2.3 NVAE. Neural Variational Autoencoders (NVAE) [7]
represent an evolution in the field of generative models, di-
verging from traditional Variational Autoencoders (VAE) and
Causal VAEs in several significant ways. NVAE adopts a hier-
archical architecture with depthwise separable convolutions,
enabling more efficient handling of high-dimensional data
compared to the fully connected or standard convolutional
layers in regular VAEs. This advanced architecture is comple-
mented by techniques like batch normalization and residual
connections, which enhance training stability and address
issues such as posterior collapse, a common problem in VAE
training. Unlike Causal VAEs, which are tailored to model
and infer causal relationships within data, NVAE focuses pri-
marily on improving the quality and efficiency of generative
modeling. It achieves this by being more scalable, allowing
for training on larger datasets and generating higher quality
images. Thus, NVAE stands out for its ability to efficiently
generate high-quality models without specifically addressing
causal inference, unlike its Causal VAE counterparts.

1.2.4 SCM. Structural Causal Models (SCM) are a frame-
work used in causal inference to represent and understand



the mechanisms behind observed data. SCMs consist of struc-
tural equations and a directed acyclic graph (DAG) that de-
pict how variables influence each other. Each equation in an
SCM corresponds to a causal mechanism, showing how a
particular variable is generated from its direct causes. These
models help in distinguishing between correlation and cau-
sation, enabling the prediction of effects from interventions
and the understanding of counterfactual scenarios.

1.2.5 Causal Disentanglement. Disentangled represen-
tation learning aims to separate out the underlying causal
factors of the data into distinct representations. This separa-
tion makes the learned representations more interpretable
and easier to manipulate. Causal disentanglement takes this
a step further by not only seeking to disentangle the repre-
sentations but also to understand the causal relationships
between them. This understanding of causal relationships
is crucial as it allows for better generalization across differ-
ent tasks and can potentially improve the performance of
downstream tasks like image inpainting.

2 Method

Our model displayed in Fig. 1 focuses on tackling three chal-
lenges: (i) designing expressive neural networks specifically
for VAEs, (ii) scaling up the training to a large number of
hierarchical groups and image sizes while maintaining train-
ing stability, and (iii) implementing structure of NVAE in
CausalVAE to improve its generation quality while remain
CausalVAE’s causal relationship. Our methodology pivots
around adapting the Causal Layer of CausalVAE to the image
inpainting domain. The causal relationships discovered will
be utilized to generate semantically coherent inpaintings.

2.1 Design of New Generative Process

Develop a new generative process to handle the inpainting
tasks ensuring it leverages the causal relationships to fill
missing or corrupted regions coherently.

o Residual Cell: Modified the Encoder part for normal
VAE to adopt the residual cell structure of NVAE,
where the residual cells expands the number of chan-
nels E times before applying the depthwise separable
convolution, and then maps it back to C channels.

o Generative Model: A new generative model py(z, x|m)
is designed, where z is the latent variable, x is the
image data, and m denotes the missing or corrupted
regions. The model aims to generate inpaintings that
are not only visually plausible but also semantically
coherent by leveraging the causal relationships.

e Probabilistic Formulation: The inpainting process is for-
mulated as a probabilistic task. The objective is to max-
imize the a posteriori probability pe(z|x, m) which can
be decomposed as py(z|x, m) o< pg(x|z, m)py(z|m) ac-
cording to Bayes’ theorem.
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o Optimization: The optimization process involves ad-
justing the model parameters 6 to maximize the like-
lihood of generating realistic inpaintings. An optimiza-
tion objective can be formulated as arg maxy £(0; X, M),
employing backpropagation and stochastic gradient
descent to find the optimal parameters.

2.2 Adaptation of Causal Layer

Integrate causal reasoning within the generative process to
ensure the model can discover and leverage causal relation-
ships among features for better inpainting.

e Causal Graphical Model: Construct a causal graphical
model [6] to represent the relationships among ob-
served variables, latent variables, and missing or cor-
rupted regions in images. Mathematically, the causal
graphical model is represented as a directed acyclic
graph (DAG) G = (V,E), where V is a set of vertices
representing the variables, and E is a set of edges in-
dicating causal relationships.

o Inference: The causal relationships are inferred by max-
imizing the likelihood of the observed data under the
causal graphical model [2]. The likelihood can be for-
mulated as L(0; X, M) = zﬁil log po(x;|m;), where 0
are the model parameters, X is the observed data, and
M represents the missing or corrupted regions.
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Figure 1. Structure for our model. The encoder takes ob-
servation x as inputs to generate independent exogenous
variable €, whose prior distribution is assumed to be standard
Multivariate Gaussian.

3 Experiments
3.1 Dataset

For the training and evaluation of our proposed model, we
have chosen to utilize the CelebA dataset [5], which is a
widely recognized dataset offering a rich set of annotations
for facial attributes. The CelebA dataset comprises images
annotated with 40 attribute labels, providing invaluable in-
formation that elucidates the characteristics and features
within face images.
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We pre-processed the CelebA dataset to tailor it to our
project needs, which includes filtering images to retain those
with particular attributes. The prepared dataset was em-
ployed for both training and evaluating our model, ensuring
that it learns to manipulate images in a way that adheres to
real-world facial attribute constrains.

Figure 2. Comparison of our initial result to the ground
truth.

3.2 Initial Experiments

Fig. 2 shows the result of out model on real world banch-
mark dataset CelebA comparing to ground truth, with Fig. 4
showing the experiments on intervening concepts GENDER,
SMILE, EYES OPEN and MOUTH OPEN respectively. We
observe that when we intervene the cause concept SMILE,
the status of MOUTH OPEN also changes. In contrast, in-
tervening effect concept MOUTH OPEN does not cause the
cause concept SMILE to change.

Despite our efforts in adjusting hyper-parameters, altering
the encoder structure, and varying the length of the latent
dimension, we observed that the generated images persis-
tently exhibited blurriness in the background. Consequently,
we shifted our focus to explore alternative aspects of the
model, particularly by modifying the decoder to address this
issue.
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Figure 3. Comparison of our improved result to the result
in CausalVAE paper.

3.3 Improved Experiments

Initially, we employed a linear structured decoder derived
from the CausalVAE framework. However, to address issues
with background clarity in the generated images, we ex-
perimented by adapting the decoder to mirror the residual
cell structure of NVAE. This modification aimed to leverage
NVAE’s proficiency in handling high-dimensional data and
its enhanced generative capabilities. The results of this adap-
tation are showcased in Fig. 3, where a marked improvement
in background clarity is evident compared to the outputs
produced using the original CausalVAE decoder. This im-
provement can be attributed to the residual cell structure’s
ability to better capture and reconstruct complex background
patterns, leading to sharper and more detailed image gener-
ation.

3.4 Learning Process

We show in Fig. 5 the learned adjacency matrix A.As the
training epoch increases, we see that the graph learned by
our model quickly converges to the true one, which shows
that our method is able to correctly learn the causal relation-
ship among the factors.
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Figure 4. SCM for our experiment
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Figure 5. The learning process of causal matrix A. The con-
cepts include: GENDER, SMILE, EYES OPEN, MOUTH OPEN
(top-to-bottom and left-to-right order); (c) converged A, (d)

ground truth.

4 Limitation and Future Works
4.1 Image Blurriness

While modifying the decoder to the residual cell structure
of NVAE improved background clarity, the images remain
somewhat blurry. This partial enhancement highlights the
need for further refinements in our approach, suggesting
areas like parameter optimization and architectural adjust-
ments for future work to achieve sharper image quality.

4.2 Trade-off Between Quality and Intervention
Capabilities

After enhancing the image quality through the decoder mod-
ifications, we observed an unexpected trade-off: a decrease
in the model’s intervention capabilities. This suggests a com-
plex balance between achieving higher image resolution and
maintaining the model’s ability to effectively manipulate and
intervene in the generative process. Future efforts will focus
on optimizing this balance, aiming to simultaneously retain
high-quality image generation while preserving robust in-
tervention capabilities.
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4.3 Slow Convergence

The slow convergence of our model, requiring over 250
epochs to produce discernible images, is largely due to the
complexities of merging VAEs with causal reasoning. VAEs
inherently need extensive training to learn data distribu-
tions, and incorporating causal relationships adds to this
complexity. This dual task of capturing probabilistic gen-
erative properties and understanding causal links results
in a longer training duration for achieving coherent visual
outputs.

4.4 Based on SCM Assumption

In the current iteration of our model, the application of SCMs
relies on a pre-determined causal framework. This approach,
while effective in integrating causal reasoning with the gen-
erative process, has its limitations. It relies heavily on prede-
fined causal relationships, which may not fully capture the
complexity and variability inherent in real-world data. For
future developments, a significant advancement would be
to enable the model to autonomously generate and refine
its own SCM. This evolution would involve the model not
only discovering the causal relationships within data but also
continuously adjusting and optimizing these relationships
as it processes more information.

5 Conclusion

In conclusion, this research introduces a novel image in-
painting method that combines causal reasoning with ad-
vanced VAEs and SCMs, as shown in our CelebA dataset
experiments. This method effectively generates semantically
coherent and visually convincing inpaintings by merging
the Causal Layer of CausalVAE with NVAE’s structure. This
blend not only enhances technical prowess but also ensures
effective generation and disentanglement, balancing theo-
retical and practical aspects of generative models. Despite
challenges like image blurriness and slow convergence, the
potential in applications such as digital forensics is signifi-
cant. Future work will focus on refining these techniques,
enhancing their application in realistic scenarios.
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